

 Navigation

 	
 index

 	Wolf CMS latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a docs/index.rst or docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Wolf CMS latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 admin-guide/rewrite.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Rewrite rules for various servers

Apache HTTP server

		Edit the _.htaccess file located in the Wolf CMS root directory.

		Find the line starting with RewriteBase /wolfcms/.

		Save the _.htaccess file.

		Rename the _.htaccess file into .htaccess (i.e. remove the underscore).

!!! note
If Wolf CMS lives in the root of your site like www.example.com, delete the wolfcms/ part so the line equals: RewriteBase /. If Wolf CMS lives in a subdirectory of your site, like www.example.com/mywolf, change the /wolfcms/ part so the line equals: RewriteBase /mywolf/.

Lighttpd server

The paths used in the rewrite code below assume that your Wolf CMS installation lives at the root of the site, i.e. http://www.example.com.

Since Lighttpd does not have an equivalent of Apache’s RewriteBase command, you will have to manually alter the paths below to conform to your Wolf CMS root.

 #
 # Wolf CMS mod_rewrite rules for lighttpd
 #
 # If your Wolf CMS install lives in a sub-directory like: http://www.example.com/mywolf/
 # you should add the subdirectory between ^ and / in the rules below and in the replacement
 # value, for example: "^/mywolf/admin(.*)$" => "/mywolf/admin/index.php?$1",
 #
 url.rewrite-once = (

 "^/install/index.html$" => "/install/index.php?rewrite=1",
 "^/install/index.php$" => "/install/index.php?rewrite=1",
 "^/install/$" => "/install/index.php?rewrite=1",
 "^/install/(.*)$" => "/install/$1",

 "^/admin/(images|javascripts|stylesheets|themes)/(.*)" => "/admin/$1/$2",
 "^/admin/index.php\?(.*)$" => "/admin/index.php?$1",
 "^/admin(.*)$" => "/admin/index.php?$1",

 "^/favicon\.ico$" => "$0",
 "^/(public|wolf)/(.*)$" => "/$1/$2",

 "^(?:(?!/admin/))/([^?]*)(\?(.*))$" => "/index.php?WOLFPAGE=$1&$2",
 "^/(.*)$" => "/index.php?WOLFPAGE=$1"

)

If you are using Wolf CMS 0.7.x, the location of some of the pages has changed. You will need to use the following instead. Since this uses ‘url.rewrite-if-not-file’, you will need at least version 1.4.24 of lighttpd.

 url.rewrite-once = (

 "^/wolf/install/index.html$" => "/wolf/install/index.php?rewrite=1",
 "^/wolf/install/index.php$" => "/wolf/install/index.php?rewrite=1",
 "^/wolf/install/$" => "/wolf/install/index.php?rewrite=1",
 "^/wolf/install/(.*)$" => "/wolf/install/$1",
)

 url.rewrite-if-not-file = (
 "^/([^\?]+)(\?(.*)$)?" => "/index.php?WOLFPAGE=$1&$3"
)

Hiawatha server

The paths used in the rewrite code below assume that your Wolf CMS installation lives in a “site” directory below the root of the system, i.e. http://www.example.com/site

Since Hiawatha does not have an equivalent of Apache’s RewriteBase command, you will have to manually alter the paths below to conform to your Wolf CMS root.

You will need an UrlToolkit similar to this where site is the folder in the web root where Wolf CMS is unpacked.

 UrlToolkit {
 ToolkitID = wolfcms
 Match ^/site/install/index.html$ Rewrite /site/install/index.php?rewrite=1
 Match ^/site/install/index.php$ Rewrite /site/install/index.php?rewrite=1
 Match ^/site/install/$ Rewrite /site/install/index.php?rewrite=1
 RequestURI exists Return
 Match ^/site/admin(.*)$ Rewrite /site/admin/index.php?$1
 Match ^/site(.*)$ Rewrite /site/index.php?WOLFPAGE=$1
 }

Remember to enable this toolkit in your Virtual Host.

The 3 regex above RequestURI are optional since they are only used for clean url validation during installation. They must be above RequestURI and can be commented out after installation or left out entirely.

You must have PreventSQLi disabled (this is also the default I think).

IIS

If you tried to install Wolf on an IIS, you’ll notice it works unless you activate the clean urls. Clean urls don’t work “out of the box”, because IIS doesn’t support the .htaccess files that are Wolf’s default.

Instead, you need to create a file named web.config and save it to the root of the website. In this file you need to add the rewrite rules. Here’s what needs to be in this web.config file.

!!! note
The following was tested on WolfCMS 0.7+

 <?xml version="1.0" encoding="UTF-8"?>
 <configuration>
 <system.webServer>
 <rewrite>
 <rules>
 <rule name="Imported Rule" stopProcessing="true">
 <match url="^(.*)$" ignoreCase="false" />
 <conditions>
 <add input="{REQUEST_FILENAME}" matchType="IsFile" ignoreCase="false" negate="true" />
 <add input="{REQUEST_FILENAME}" matchType="IsDirectory" ignoreCase="false" negate="true" />
 </conditions>
 <action type="Rewrite" url="index.php?WOLFPAGE={R:1}" appendQueryString="true" />
 </rule>
 </rules>
 </rewrite>
 <httpErrors errorMode="DetailedLocalOnly" />
 </system.webServer>
 </configuration>

!!! important
At one point, I was getting an error 500 from the server and I thought the problem came from the web.config file. It turned out that I had opened a php tag as <? instead of <?php. So if you encounter the same problem, verify your php tags!

Nginx server directives

Put the following code in your server block:

 try_files $uri $uri/ /index.php?WOLFPAGE=$uri&$args;

You may also have to set the URL suffix to be blank define('URL_SUFFIX', ''); in config.php

!!! note
The code above assumes that your Wolf CMS installation lives at the folder defined by the root directive. For more information about Nginx rewriting, visit http://wiki.nginx.org/NginxHttpCoreModule#try_files.

Zeus server

 map path into SCRATCH:path from %{URL}
 look for file at %{SCRATCH:path}
 if exists then goto END
 look for dir at %{SCRATCH:path}
 if exists then goto END

 match URL into $ with ^/(.*)$
 if matched
 look for file at $1
 if not exists
 set URL=/index.php?WOLFPAGE=$1
 goto END
 endif
 endif

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

development/observer-system.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

The Observer System

Like many applications, Wolf CMS has an event/observer system. We call it the observer system because Observers watch for events. Most usually, the observers are used by plugins but they can be found in other parts of the Wolf CMS system.

Watching for events

In order to watch for an event and subsequently initiate some action, you first tell the Observer system you want to observe an event, then you write a handler function.

 Observer::observe('page_edit_after_save', 'my_simple_observer');

 function my_simple_observer($page) {
 /* do what you want to do */
 var_dump($page);
 }

The first call to Observer::observe tells Wolf CMS that your plugin wants to receive events of the type page_edit_after_save and that the function that should handle these types of events is called my_simple_observer.

Generating an event

Not only can you observe events that are generated, you can of course also generate events yourself.

 Observer::notify('my_plugin_event', $somevar);

As you can see, the code to generate an event is fairly simple. The first argument, my_plugin_event, is the event’s name. The second argument is a variable that is passed to the handling function. This variable can contain just about anything you want, from a simple string to an array of complex objects.

Using Observers to customize Page form

Observer events in the Page editing form allow you to include custom inputs or dialogs to save data that is not part of the page model. The following diagram gives you an indication of which event you should use and where it would be applied within the form.

!!! note
TODO - Add diagram

Overview of Observer events

The Wolf CMS Observer system has a number of events which will continue to expand in the future. The following is a list of events with their parameters:

 Observer::notify('admin_after_logout', $username);
 Observer::notify('admin_login_failed', $data['username']);
 Observer::notify('admin_login_success', $data['username']);

 Observer::notify('comment_after_add', $comment);
 Observer::notify('comment_after_approve', $comment);
 Observer::notify('comment_after_delete', $comment);
 Observer::notify('comment_after_edit', $comment);
 Observer::notify('comment_after_unapprove', $comment);

 Observer::notify('cron_run');

 Observer::notify('csrf_token_invalid', AuthUser::getUserName()); // Since 0.7.0
 Observer::notify('csrf_token_not_found', AuthUser::getUserName()); // Since 0.7.0

 Observer::notify('dispatch_route_found', $uri);

 Observer::notify('layout_after_add', $layout);
 Observer::notify('layout_after_delete', $layout);
 Observer::notify('layout_after_edit', $layout);

 Observer::notify('login_requested', $redirect); // Since 0.7.5
 Observer::notify('login_required', $redirect); // Since 0.7.5
 Observer::notify('logout_requested'); // Since 0.7.0

 Observer::notify('page_add_before_save', $page); // Added in Rev251 for 0.7.0
 Observer::notify('page_add_after_save', $page);
 Observer::notify('page_before_execute_layout', $layout); // Param. since 0.7.6
 Observer::notify('page_delete', $page);
 Observer::notify('page_edit_before_save', $page); // Added in Rev251 for 0.7.0
 Observer::notify('page_edit_after_save', $page);
 Observer::notify('page_found', $page);
 Observer::notify('page_not_found', $uri); // $uri parameter as of 0.8.0
 Observer::notify('page_requested', $uri);

 Observer::notify('part_add_before_save', $part); // Since 0.7.0
 Observer::notify('part_add_after_save', $part); // Since 0.7.0
 Observer::notify('part_edit_after_save', $part); // Since 0.7.0
 Observer::notify('part_edit_before_save', $part); // Since 0.7.0

 Observer::notify('plugin_after_disable', $plugin);
 Observer::notify('plugin_after_enable', $plugin);
 Observer::notify('plugin_after_uninstall', $plugin);

 Observer::notify('snippet_after_add', $snippet);
 Observer::notify('snippet_after_delete', $snippet);
 Observer::notify('snippet_after_edit', $snippet);

 Observer::notify('user_after_add', $user->name, $user->id); // id since 0.7.6
 Observer::notify('user_after_delete', $user->name, $user->id); // id since 0.7.6
 Observer::notify('user_after_edit', $user->name, $user->id); // id since 0.7.6
 Observer::notify('user_edit_view_after_details', $user); // Since 0.7.0

 Observer::notify('view_backend_list_plugin', $plugin_name, $plugin);
 Observer::notify('view_backend_layout_head', CURRENT_PATH); // 0.7.7-dev

 Observer::notify('view_page_edit_plugins', $page);
 Observer::notify('view_page_edit_tab_links', $page); // Added in for 0.7.4
 Observer::notify('view_page_edit_popup', $page);
 Observer::notify('view_page_edit_tabs', $page);
 Observer::notify('view_page_after_edit_tabs', $page);

 © Copyright .
 Created using Sphinx 1.3.1.

development/helpers.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Helpers

Helpers are similar to plugins: they are separate pieces of code which extend Wolf CMS’s functionality. However, helpers are never loaded unless specifically called by an outside piece of code.

They are found in the <root>/wolf/helpers/ directory.

Using Helpers

To call a single helper, use: <?php use_helper('Helpername'); ?>

You can call more than one helper at a time by listing them as parameters:

 <?php use_helper('Email', 'Pagination', 'Zip'); ?>

The functionality provided by the helper will only be available on the page(s) where it is specifically called by this code.

Helpers currently supplied with Wolf CMS

Name	Description
———-	———–
BigInteger	Arbitrary precision integer arithmetic library; adapted from phphseclib.
Email	Simple Email library that permits email to be sent using Mail, Sendmail, or SMTP.
I18n	Simple internationalisation library used by Wolf CMS core for translations.
Hash	Keyed-hash message authentication codes; adapted from phphseclib.
Kses	HTML/XHTML filter that only allows some elements and attributes.
Pagination	Simple Pagination helper based on the CodeIgniter pagination helper.
Upload	Simple upload library.
Validate	Functions to help validate data of different kinds; based on Kohana 2.x helper.
Zip	Simple Zip library that allows creation and downloading of zip files.

Pagination

The default pagination helper which comes with Wolf is a light revision of the the Code Igniter pagination helper. It allows multiple pages to be listed as a set of page links in the form:

Pages: 1 2 3 4

The notes that follow explain how to set up Pagination.php for use with the default “Articles” page in Wolf CMS, but can be modified for use with other pages as well. Be aware that for the Set up (#3, below), the code varies depending on whether mod_rewrite is enabled or disabled.

!!! note
These instructions assume mod_rewrite is enabled, with the disabled version given as a variation.

Usage

1. Call objects to Paginate

Open the **Articles** page for editing: this is the **only** page used for these instructions. This first thing to do at the top of the page, is call the "page objects" you wish to paginate:

<?php $last_articles = $this->children(array(
 'limit'=>5,
 'offset'=>($pagination->cur_page)*($pagination->per_page),
 'order'=>'page.created_on DESC'
)); ?>

Here, note that limit should be the same value as the per_page value in the set up of step #3, below. The offset code is required by the helper to form the links properly, but takes its values from the pagination set up.

2. Loop through the pages

 <?php foreach ($last_articles as $article): ?>

 <div class="entry">
 <h3><?php echo $article->link($article->title()); ?></h3>
 <?php // Whatever else you want to include: teaser? meta? etc. ?>
 </div><!-- end .entry -->

 <?php endforeach; ?>

3. Set up helper

At this point, call the helper, and set the options (if this code block is put at the top of the page, the offset will not work properly):

 <?php use_helper('Pagination');
 $pagination = new Pagination(array(
 'base_url' => '/articles?page=',
 'total_rows' => $this->childrenCount(),
 'per_page' => 5,
 'num_links' => 8,
 'cur_page' => (isset($_GET['page']) ? $_GET['page']: 1)
)); ?>

Only three of those lines might require adjustment:

		base_url
Include the slug of the current page (in this case, “articles”), which is the parent of the pages you wish to paginate, followed by ?page=. If you have mod_rewrite disabled, then add another ”?” after the initial slash: /?articles?page=.

		per_page
The number of sub-pages linked on each paginated page.

		num_links
When this number of page links is exceeded, a “First” and “Last” link will be added to the left and right of the number list.

4. Call pagination links

 <?php if ($pagination->total_rows > $pagination->per_page) echo '<p>
Pages: '.$pagination->createLinks().'</p>'; ?>

You can of course vary the <p> and
 markup to suit your layout. Now save the Articles page. Done!

Upload

The Upload helper is a way for you to add simple file upload functionality to Wolf CMS.

!!! caution
This helper is still under development, and does not yet work.

Validate

The Validate helper is for validating fields. In this example it is used to check for a valid email address:

 <form action="<?php echo $this->url(); ?>" method="post">
 E-mail: <input type="text" name="email" />
 <input name="submit" type="submit" value="Submit" />
 </form>

 <?php
 use_helper('Validate');
 $email = isset($_POST['email']) ? htmlentities($_POST['email'], ENT_QUOTES, "UTF-8") : '';
 if(isset($_POST['submit'])):
 if(Validate::email($email)== true):
 echo '<h3>Valid e-mail</h3>';
 else:
 echo '<h3>Invalid e-mail!</h3>';
 endif;
 endif;
 ?>

It also has support for:

		email()

		email_domain()

		email_rfc()

		url()

		phone()

		date()

		datetime()

		alpha()

		alpha_numeric()

		alpha_dash()

		alpha_comma()

		slug()

		alpha_space()

		alphanum_space()

		digit()

		numeric()

		range()

		decimal()

		color()

		multiple()

		valid_utf8()

		compliant_utf8()

 © Copyright .
 Created using Sphinx 1.3.1.

glossary.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Glossary

Source: Wikipedia [http://www.wikipedia.org], the free encyclopedia

.htaccess
: the default name of Apache’s directory-level configuration file.

Also see: <http://www.wikipedia.org/wiki/.htaccess>

Cookie
: a packet of information sent by a server to a World Wide Web browser and then sent back by the browser each time it accesses that server.

Also see: <http://www.wikipedia.org/wiki/HTTP_cookie>

DB / database
: an organized collection of data.

Also see: <http://www.wikipedia.org/wiki/Database>

extension
: a PHP module that extends PHP with additional functionality.

Also see: <http://www.wikipedia.org/wiki/extension>

host
: any machine connected to a computer network, a node that has a hostname.

Also see: <http://www.wikipedia.org/wiki/Host>

hostname
: the unique name by which a network attached device is known on a network.

Also see: <http://www.wikipedia.org/wiki/Hostname>

HTTP
: HyperText Transfer Protocol is the primary method used to transfer or convey information on the World Wide Web.

Also see: <http://www.wikipedia.org/wiki/HyperText_Transfer_Protocol>

https
: a HTTP-connection with additional security measures.

Also see: <http://www.wikipedia.org/wiki/Https:_URI_scheme>

ISO
: International Standards Organization

module
: some sort of extension for the Apache Webserver.

Also see: <http://www.wikipedia.org/wiki/module>

MySQL
: a multithreaded, multi-user, SQL (Structured Query Language) Database Management System (DBMS).

Also see: <http://www.wikipedia.org/wiki/MySQL>

mysql
: the MySQL client PHP extension.

Also see: <http://php.net/mysql>

PCRE
: Perl Compatible Regular Expressions is the perl-compatible regular expression functions for PHP

Also see: <http://php.net/pcre>

PHP
: short for “PHP: Hypertext Preprocessor”, is an open-source, reflective programming language used mainly for developing server-side applications and dynamic web content, and more recently, a broader range of software applications.

Also see: <http://www.wikipedia.org/wiki/PHP>

port
: a connection through which data is sent and received.

Also see: <http://www.wikipedia.org/wiki/Port_(computing)>

RFC
: Request for Comments (RFC) documents are a series of memoranda encompassing new research, innovations, and methodologies applicable to Internet technologies.

Also see: <http://www.wikipedia.org/wiki/Request_for_Comments>

Server
: a computer system that provides services to other computing systems over a network.

Also see: <http://www.wikipedia.org/wiki/Server_(computing)>

socket

: a form of inter-process communication.

Also see: <http://www.wikipedia.org/wiki/Socket#Computer_sockets>

SSL
: Secure Sockets Layer is a cryptographic protocol which provides secure communication on the Internet.

Also see: <http://www.wikipedia.org/wiki/Secure_Sockets_Layer>

SQL
: Structured Query Language

Also see: <http://www.wikipedia.org/wiki/SQL>

URL
: Uniform Resource Locator is a sequence of characters, conforming to a standardized format, that is used for referring to resources, such as documents and images on the Internet, by their location.

Also see: <http://www.wikipedia.org/wiki/URL>

Webserver
: A computer (program) that is responsible for accepting HTTP requests from clients and serving them Web pages.

Also see: <http://www.wikipedia.org/wiki/Webserver>

ZIP
: a popular data compression and archival format.

Also see: <http://www.wikipedia.org/wiki/ZIP_(file_format)>

zlib
: an open-source, cross- platform data compression library by Jean-loup Gailly and Mark Adler.

Also see: <http://www.wikipedia.org/wiki/Zlib>

 © Copyright .
 Created using Sphinx 1.3.1.

development/constants.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Constants

There are a number of system constants available to make plugin development simpler.

Paths

Constant	Description	Example
————	——————————	————————–
APP_PATH	Path of wolf core directory	/var/www/html/wolf/app
CMS_ROOT	Path of wolf install	/var/www/html
CORE_ROOT	Path of wolf app directory	/var/www/html/wolf
PLUGINS_ROOT	Path of wolf plugins directory	/var/www/html/wolf/plugins
THEMES_ROOT	Path of Wolf themes directory.	CMS_ROOT/public/themes

URLs

Constant	Description	Example
—————	——————————————————-	—————————————–
ADMIN_DIR	Site’s backend web address	http://www.mywebsite.com/admin/
PLUGINS_URI	Web address of your plugin directory	http://www.example.com/wolf/plugins/
THEMES_URI	Web address of your themes directory	http://www.mywebsite.com/public/themes/
URI_PUBLIC	Relative address of your site	/ or /wolfcms/ when installed in subdir
URL_PUBLIC	Web address of your site	ttp://www.mywebsite.com/
BASE_URL	Web address of your site including mod_rewrite use	http://www.mywebsite.com/
BASE_URI	Relative address of your site including mod_rewrite use	/ or /wolfcms/ when installed in subdir
URL_SUFFIX	The extension of generated URLs.	.html
USE_MOD_REWRITE	If mod_rewrite (nice URLs) is enabled	true or false

Database

Constant	Description	Example
————	————————————–	————————————————–
DB_DSN	The DSN (type/address of the database)	mysql:dbname=cms_database;host=localhost;port=3306
TABLE_PREFIX	The prefix attached to all table names	wolfcms_
CMS_CONN	PDO Database Connection	‘$pdo = $CMS_CONN->prepare($sql);’ Please note that it is preferred for you to use Record::getConnection() which also returns a PDO Database connection.

Page Status

Wolf assigns one of four different “status” levels to pages; each status named below also has a corresponding numerical value. Note these two examples:

		This returns the numerical value corresponding to the page status:

<?php echo $this->status_id; ?>

		The name can be used when testing for a particular status:

<?php if ($this->status_id == Page::STATUS_PUBLISHED) { echo 'PUBLISHED'; } ?>

This is the equivalent of this code which produces the same result:

 <?php if ($this->status_id == 100) { echo 'PUBLISHED'; } ?>

Draft

Page::STATUS_DRAFT

The “draft” status is for use during the early stages of producing a page, before it is ready for display on the frontend of the website.

		It will NOT be listed by: $this->children()

		It will NOT be found by: $this->find('its_uri')

		It is NOT possible to access the page directly with its full url

Preview

Page::STATUS_PREVIEW

This status allows content editors to view a page “live” before publishing it; it can only be accessed by full URL (or the “View this page” link while editing in the backend) by a content editor who is logged in to Wolf.

		It will NOT be listed by $this->children()

		It will NOT be found by $this->find('its_uri')

		It is possible to access it directly with its full url ONLY IF logged in with the role of administrator, developer, or editor

Published

Page::STATUS_PUBLISHED

Once “published”, a page is viewable on the frontend by any visitor to the website.

		It will be listed by $this->children()

		It will be found by $this->find('its_uri')

		It is possible to access it directly with its full url

Hidden

Page::STATUS_HIDDEN

Use this status when you have written a page that you do not want to appear in your site’s navigation (e.g., RSS, Sitemap, etc.).

		It will NOT be listed by $this->children()

		It will be found by $this->find('its_uri')

		It is possible to access it directly with its full url

!!! note
A “hidden” page can be listed with $this->children(array(), array(), true), because children() can include hidden pages if the 3rd param is set to true.

 © Copyright .
 Created using Sphinx 1.3.1.

development/functions.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Functions

The “functions” section houses pages that provide more detailed information about individual functions of Wolf CMS. These pages serve as an additional source of information on top of the PHPDoc references. These function pages may be out of date since they are manually maintained.

author()

Wolf saves the id of the user who creates a page, and the name for that id can be displayed using author(). This is commonly given in the page’s “meta”, for example:

 <p class="meta">Posted by <?php echo $this->author(); ?></p>

Also see: updater().

authorId()

Wolf saves the unique id number of the user who creates a page, and that id number can be accessed using authorId(). This might be especially useful if two “authors” registered on the system have the same name. For example:

 <?php if ($this->authorId() == '1') {
 // do things
 } else {
 // do something else
 }
 ?>

This would be a more reliable test than one using the author() function (which returns the name) if two users were both registered with same name.

Also see: updaterId().

breadcrumb()

When a page is created in Wolf, the “Breadcrumb” value is automatically completed with the same values as the page title itself. This is the page reference used automatically by the breadcrumbs function, but it can also be used on its own:

 <?php echo $this->breadcrumb(); ?>

The “Breadcrumb” field is found under the “Metadata” tab next to the “Page Title” tab, and the value can be edited.[^1] It may be, for example, that a very long page title could be abbreviated for use as a “breadcrumb”. Once edited, and different from the Page Title, its value will remain unchanged even if the Page Title itself is changed.

[^1]: It can be used, then, as a secondary “page title” field.

breadcrumbs()

“breadcrumbs” can be created in Wolf by adding this code to a Layout:

 <?php echo $this->breadcrumbs(); ?>

By default, it produces output of this kind:

Home > Music > Baroque > Bach

In order to change the value of the separator, include it as a parameter. If for example, you wish to use a forward slash:

 <?php echo $this->breadcrumbs('/'); ?>

Any character may be used this way.

!!! note
If you wish to use a backslash, it must be given twice, since it is a PHP escape character:


```
  <?php echo $this->breadcrumbs('\\'); ?>
```


children()

children() returns an array of values relating to the child pages of the current page.[^2] Normally, then, it is not used on its own, but to give some information about published subpages to a given page.

The array produced by children() requires a foreach loop to present usable information. The most simple listing of subpage titles, then, could look like this:

 <h3>List of pages</h3>

 <?php foreach ($this->children() as $child) : ?>
 <?php echo $child->title(); ?>
 <?php endforeach; ?>

In situations when in return only a single result is desired, the foreach loop should be ditched in favor of limit ⇒ 1 argument (see Arguments below in this page), otherwise it will not work and a fatal error is returned instead. The example below returns the last published page from Articles as the parent page.

 <?php
 $page_article = $this->find('/articles/');
 $last_article = $page_article->children(array('limit'=>1, 'order'=>'page.created_on DESC'));
 ?>
 <h2 class="post_title"><?php echo $last_article->link(); ?></h2>
 <?php echo $last_article->content(); ?>
 <?php if ($last_article->hasContent('extended')) echo $last_article->link('Continue Reading…'); ?>

For further information on how to use children() in constructing menus, see how to Display a list of subpages.

Conditions

Including hidden pages

By default, children() only returns “published” pages.[^3] In the following line of code, the final true tells Wolf to include hidden pages as well:

 $this->children(null,array(),true)

Additional arguments

Four more arguments can be given to children() to further define the subpages it returns:

		where —

 Sets a condition.

		order —

 Determines the sort order by field name in page table [see note below], either ASC ascending, or DESC descending.

		offset —

 Where in the list of subpages to begin the list.

		limit —

 How many pages to return.

!!! note
Any of the fields in the page table can be used to sort your “children” pages. In first example, below, you could have:

`'order' => 'title ASC'`

to arrange the order by the page Title in A-Z order, or

`'order' => 'slug DESC'`

to order the list by “slug” value in Z-A order. That should give you the idea! While any value in the “page” table could be used here, the main options would include:

* title
* slug
* breadcrumb
* created_on
* published_on
* updated_on
* created_by_id
* updated_by_id

The default is *position*, which is set automatically when the drag-drop page re-ordering is used.

[^2]: Consult the documentation on $this-> to find out what the “current” page is in different situations.

[^3]: Consult the documentation on creating a page for a full list of page-status definitions.

childrenCount()

The childrenCount() function returns a count of how many child pages belong to the current page. A simple echo $this->childrenCount(); will return the number of “published” pages to the current page.

childrenCount() can be useful, then, for determining when to include navigation, for example:

<?php if ($this->childrenCount() > 0) {
 // if count is > 0, there are child pages, so do stuff
 } else {
 // no child pages, so do something else
 }
?>

It takes the same parameters as the children() function.

content()

As its name suggests, the content() function returns the content of pages created in Wolf. More specifically, it returns the content of the page-part given as a parameter; if no parameter is given, then it defaults to the body page-part, circled in red in this graphic:

[image:]

In order to display the body, put this code at the appropriate place in your layout:

 <?php echo $this->content(); ?>

Other content parts (page-parts) can be created by clicking the green “+” icon above the upper-right corner of the page editing box. (The red “-” icon deletes the active part/tab, so be careful!)

[image:]

If you need to display one of these “custom” parts, like the sidebar tab in the Home Page graphic above (circled in blue), just add it to the parameter:

 <?php echo $this->content('sidebar'); ?>

!!! note
If you use <?php echo $this->content(); ?> in page content, it will create an infinite loop: so don’t do it! In other words, only use that code for the page body tab in a Layout, not in a Page.

“Inheriting” content

In order for the “part” to be inherited by “child” pages (and “child-of-child” pages, etc.), use the true parameter:

<?php $this->content('sidebar', true); ?>

!!! note
If the current page has its own equivalent “sidebar” part, then that will prevent the “inheritance” from the parent page from taking place.

Displaying the content of one page on a different page

If you want to call the content from a some page onto a different page, you must use the find() function in conjunction with content(). For example, to display the content of the default “About us” page on any other page, use this code:

<?php echo $this->find('about_us')->content(); ?>

date()

To display the date a page was created, use:

<?php echo $this->date(); ?>

If you want to change the format of the date, you can pass it as the first parameter of the method like this:

<?php echo $this->date('%A, %e %B %Y'); ?>

For more information about the date format, check the PHP manual for strftime at http://php.net/strftime

!!! note
On Windows, and rarely in other settings, the use of %e may prevent any date appearing! In this case, use %d in its place. (See PHP Bugs for more information, the date howto for a work-around.)

Values

The default date returned is the page’s creation date. The dates which can be displayed are:

		created — (default) which returns the date the page was initially stored in the database, no matter what “Status” it had;

		published — which returns the date the page was first saved with the “Status” set to “Published”; and

		updated — which returns the most recent date on which that page was altered (this can include re-ordering)

Example

For example, if you want to display the last updated time of this page, use this:

 <?php echo $this->date('%a, %e %b %Y', 'updated'); ?>

How to translate every date in your layout

Set the locale to your language with the setlocale PHP function:

 <?php setlocale(LC_ALL, 'fr_CA.utf8'); ?>

For more information about this function, consult the PHP manual on setlocale at http://php.net/setlocale

description()

In editing a page, under the Metadata tab is the “Description” field which makes use of the description() function. The default Layout includes this line in the <head>…</head> section:

 <meta name="description" content="<?php echo ($this->description() != '') ? $this->description() : 'Default description goes here'; ?>" />

This checks to see if there is any Metadata filled in for the page, and if there is, it is used. Otherwise, the default text is used.

executionTime()

The executionTime() function returns the time in seconds it takes for the page to be rendered. It can be called this way:

 <?php echo $this->executionTime(); ?>

When DEBUG is defined as true in config.php, this information is also reported in the footer of the admin pages.

find()

The find() function can be used to find and retrieve Page objects. As such, it needs a value to search on, either a slug value or a variable. It returns a Page object which has further functions to retrieve page information (or an array of information, depending on which of the object’s function you use). A simple example:

 <?php
 $pageobject = $this->find('/about-us');
 echo $pageobject->link();
 ?>

You can also directly access the object’s (in this case) link() function with a short hand notation. This prevents you from first having to assign the result of the find() function to a variable before accessing the object’s functions. A simple example:

 <?php echo $this->find('/about-us')->link(); ?>

These two examples are functionally the same and produce the following HTML from anywhere in the site:

About us

For the main level of navigation, find() does not need forward-slashes. All of these will produce the same result:

		$this->find('/about-us')

		$this->find('/about-us/')

		$this->find('about-us')

find() can be used in conjunction with most (probably all!) of Wolf’s other functions, not just “link”, as in the example above.

Examples

Finding pages at Level 2

When looking for child-of-child pages (That is, pages at level “2”; see the level() documentation for explanations of levels), both terms need to be given:

		hard set: $this->find('fruit/apples');

		using variables: $this->find($parent.'/'.$subpage);

Note that the getUri() function gives all slugs for a page, including the slugs of all ancestor pages.

Using variables

The value of the search term can be contained in a variable. For example, the conditional navigation in the “Wolf” default layout finds a variable, $parent, which is the current top-level navigation page. Using this value in conjunction with the “children” function produces a dynamic listing of child-pages, giving a simple menu:

 <?php // simplified code:
 $topPage = $this->find($parent);
 ?>

 <?php foreach ($topPage->children() as $subPage) : ?>
 <?php echo $subPage->link(); ?>
 <?php endforeach; ?>

findById()

The findById() function allows you to retrieve a set of page objects using a page’s id as the search term. (See the id() documentation on how to find the ID of any given page.) This function works in the same way as the find() function; consult its entry for more discussion.

Also see: linkById() and urlById() gives information about using a variable for the ID.

Example

You can use the id of page to construct a basic menu of child pages. This can be helpful in cases where the slugs or location of a parent page might change (“4” is the id of the “articles” page in a default installation of Wolf):

 <?php $children = $this->findById(4)->children(); ?>

 <?php foreach ($children as $child) : ?>
 <?php echo $child->link(); ?>
 <?php endforeach; ?>

getUri()

This function will return the slug values which point to a given page.

Notes

For this code: <?php echo $this->getUri(); ?>, note the different results:

		for URL: http://www.wolfsite.com/
		getUri() = [nothing]

		for URL: http://www.mysite.com/wolf/ (when installing Wolf CMS in a subdirectory ‘wolf’)
		getUri() = [nothing]

		for URL: http://www.wolfsite.com/about_us
		getUri() = about_us

		for URL: http://www.wolfsite.com/about_us.html
		getUri() = about_us

		for URL: http://www.wolfsite.com/articles/2009/11/10/my_first_article
		getUri() = articles/my_first_article

Note in the last example that only the slug values are given, not the yyyy/mm/dd values generated by the Archive plugin. For this page behaviour, compare the related “constant”, CURRENT_URI.

Examples

Finding “top slug” for page tree

It is often useful to find the slug of the top (level 1) page in a tree. This can be using for conditional navigation, or setting a unique background or banner for that area of the site, etc. The most simple code for this can use the getUri() function:

 <?php
 // Returns the top parent slug:
 $topParent = reset(explode('/', $this->getUri()));
 ?>

For the URI of fruit/apples/granny-smith with the code above, then echo $topParent; would return fruit.

Get list of “sibling” pages

If one wanted a list of “sibling” pages (at same level, with same parent), you wouldn’t know in advance how many slugs were needed in the find-> statement, so here again getUri() should be used. The following code (to be used in a Layout) produces a simple sibling list of this kind:

		Sibling1

		Sibling2

		Sibling3

 <?php if ($this->level() > 0) : ?>

 <?php foreach ($this->find($this->parent->getUri())->children() as $sibling) : ?>
 <?php if ($this->slug() != $sibling->slug()) : ?>
 <?php echo $sibling->link(); ?>
 <?php endif; ?>
 <?php endforeach; ?>

 <?php endif; ?>

!!! note
Note that the code as given omits the current page. To include all sibling pages, including the current page, remove the “inner” if/endif statements (lines 4 and 6).

hasContent()

The hasContent() function may be thought of as the conditional counterpart of the content() function (See the content() function entry for a more complete explanation.)

It can take two parameters:

		A page-part must given as the first parameter. If it is found, the function returns true, otherwise it returns false.

		Like content(), the hasContent() function can also be inherited by setting the second parameter to true (optional); by default this is set to false.

Examples

Again, like content(), this function relates to a given object, and so is used like this:

 <?php echo $this->hasContent('page-part') ? $this->content('page-part'): ''; ?>

For the page-part to be inherited by all descendant pages, use:

 <?php echo $this->hasContent('page-part') ? $this->content('page-part', true): ''; ?>

!!! note
Version notes

< 0.6.0

In versions up to and including 0.6, the name does not quite match the operation of this function: it does not test to see if “page-part” has any content, and then echoes it if there is some text there. Rather, it checks to see if there is a “page-part”, and then echoes whatever is there.

In other words, this function tests to see if a part exists, and will return “true” even if the part is there with no content at all.

0.7.0+

With the introduction of the `partExists()` function, `hasContent()` now behaves as expected by the name: it checks to see if the part exists and if that part contains any content.

id()

The id() function returns the database ID of the current page. This code:

 <?php echo $this->id(); ?>

will return a number, e.g. “1” for the root page (“Home page”) created at install time.

!!! note
Note that for Archive pages, (e.g., the %B %Y archive monthly archive page created during installation), the id() result will be the same no matter which month (in this example) is being displayed, since each one is the same “page”.

Finding the ID of a page

To discover the ID of any page (“68” in the examples below), either (a) hover over the title in the Pages index, and the page id and slug will be displayed in a tooltip:

[image:]

or (b) click the Settings tab when editing the page:

[image:]

includeSnippet()

This function is used to include snippets in Wolf pages. The syntax is:

 <?php $this->includeSnippet('the_name_of_the_snippet'); ?>

On the way the special PHP variable $this-> behaves when used in a snippet, see the documentation for $this->.

Snippets may call/include other snippets.

From 0.7.0 the includeSnippet() function will return true if the snippet name is found, but false if the snippet name does not exist. If a test is used which evaluates includeSnippet() as true, the value of the snippet will be passed automatically.

Hints

Conditional Use of Snippets

You could also create a snippet with your php code, then only include it on the relevant page by using a conditional statement. That way you won’t need a page-part, and it’s only a small addition to your layout:

 <?php // only include on contact page or children
 if(url_start_with('/contact')) $this->includeSnippet('the_name_of_the_snippet');
 ?>

Just keep in mind that it will also be included in any children pages, because it’s looking for a url that begins with the provided text.

keywords()

In editing a page, under the Metadata tab is the “Keywords” field which makes use of the keywords function. The default Layout includes this line in the <head>…</head> section:

<meta name="keywords" content="<?php echo ($this->keywords() != '') ? $this->keywords() : 'default, keywords, here'; ?>" />

This checks to see if there are any keywords filled in for the page, and if there are, they are used. Otherwise, the default text is used.

level()

level() refers to the “distance” of a page in the tree from Home Page or, more precisely, the number of elements a given page is distant from the “root” in the URI. “Home Page” (or “root” in the URI) is at zero.

You can echo the level of a page to the screen using this code:

 <?php echo $this->level(); ?>

Examples

In this URI	this page	is at this level
—————————————	————-	—————-
http://www.example.com/	(home page)	0
http://www.example.com/wolf/	(home page)	0
http://www.example.com/about-us.html	about-us.html	1
http://www.example.com/about-us/contact	contact	2

It is important to note that the “archive” (“blog”) type pages work this way:

In this URI	this page	is at this level
————————————————–	———-	—————-
http://www.example.com/articles	articles	1
http://www.example.com/articles/2009/03/07/my-news	my-news	5
http://www.example.com/articles/my-news	my-news	5

!!! note
In an “archive” setting, the level of my-news is always 5, even though it is the child of the articles page which is at level 1.

Usage note

level() is very useful in a test to keep things off the “Homepage” that should only appear “inside” the site:

 <?php if ($this->level() != 0) : ?>
 ... do stuff inside the site, but not on the Homepage ...
 <?php endif; ?>

The if() test checks to see if the level is not ‘0’ (= homepage), and if not, whatever appears before the endif will be run.

link()

The link() function by default produces the title of the current page wrapped in HTML hyperlink tags For example, in an out-of-the-box Wolf install, for the “About Us” page, this code:

 <?php echo $this->link(); ?>

produces:

About us

Arguments

link() can take two arguments: the first to give the title for the link (so overriding the default page title), the second can be used for other link parameters.

Also see: linkById()

Link with different text

Assuming that “About Us” is still the “current” page, then this code:

 <?php echo $this->link('Click here!'); ?>

will produce this link:

 Click here!

Link with Title text, adding parameter

To retain the default title, but add a further parameter, this code:

 <?php echo $this->link($this->title, ' class="info"'); ?>

will produce this link:

 About us

!!! tip
To produce links of pages other than the current one, see the find() function.

linkById()

This function makes it possible to create a “persistent link” to a page, so that the link will not break even if the page is moved to a different location in the page hierarchy. It has the same options as the link function (see that page for explanations and examples). The page ID is used as the basis for the link, rather than the page’s “slug”.

Also see: findById(), urlById().

Usage

 <?php echo Page::linkById(3); ?>

or

 <?php echo $this->linkById(3); ?>

where “3” in the example above is the “id” of the targetted page.

To find out what the ID of a given page is, either look on the “metadata” tab, or hover above the page’s title or icon in the main admin page listing, where the ID will appear as a tooltip.

Using a variable for the ID

Using a simple variable for the ID may not pass the filter test set by the linkById() function, since the variable might be a “string” rather than an “integer”, which is what this function requires. In other words, something like this:

 <?php echo Page::linkById($article->id()); ?>

might throw an error. It is possible to set the ID number dynamically, but it might require an extra step, wrapping the variable for the ID in with the PHP intval() function, like this:

 <?php
 $articleId = intval($article->id());
 echo Page::linkById($articleId);
 ?>

Another more compact solution uses PHP (int) to cast the value as an integer:

 <?php
 echo Page::linkById((int)$article->id());
 ?>

With either of these solutions in place, the linkById() function will work as expected.

next()

Wolf provides a simple previous() and next() function. next returns an array of values relating to the page following the current page, if it exists. It is thus not used on its own, but normally would be used in the Layout to provide a link to the **next* page.

Example

The following code tests to see if a next page exists. If it does, it makes a link accompanied by a label with a double-arrow pointing right:

 <?php if ($next = $this->next()): ?>
 <div style="float: right; border-top: thin solid #ccc; padding-top: 4px;">Next » <?php echo $next->link(); ?></div>
 <?php endif; ?>

Also see: previous()

odd_even()

This simple function returns either odd or even (in that order) in turn. This helps especially in the production of tables, or in any case where alternating values need to be produced.

For example, used in a foreach loop of this kind (note the “class” in the paragraph tag):

 <?php foreach ($articles as $article): ?>
 <p class="<?php echo odd_even(); ?>"><?php echo $article->title(); ?></p>
 <?php endforeach; ?>

the odd_even() function would produce this output:

 <p class="odd">Yesterday</p>
 <p class="even">Penny Lane</p>
 <p class="odd">Help!</p>
 <p class="even">Eleanor Rigby</p>
 ...

This function has an alias as even_odd() which produces identical output.

parent()

parent($level) returns an array of values relating to the parent page of the current page. Normally, then, it is not used on its own, but to give some information about the parent page.
Using the $level parameter

$level must be initialized properly if it is to be used:

		If you do NOT supply $level, you simply get the parent object.

		If $level > $this->level(), you get FALSE.

		If $level == $this->level(), you get $this returned.

		Otherwise it tries the above tests with the parent object.

Thus, if a value is given for $level, it should be one of: null, equal-to-current-level, or greater-than-current-level.
Examples

For the following tree of pages:

 Home Page
 |
 |- Hickory
 | |
 | |- Dickory
 | |
 | |- Dock
 |
 |- Clock

		when Clock is the current page, then:
		$this->parent()->title() returns Home Page

		$this->parent()->slug() returns ‘ ‘ (i.e., null)

		$this->parent()->level() returns 0

		when Dock is the current page, then:
		$this->parent()->title() returns Hickory

		$this->parent(2)->title() returns Dock (this page is at level 2)

		$this->parent()->slug() returns hickory

		$this->parent()->level() returns 1

		etc. …

		when Home Page is the current page, then:
		$this->parent()->ANYTHING returns an ERROR (do not use it!)

partExists()

The partExists() function is related to the hasContent() function, and tests for the simple presence of a specified page-part.

It can take two parameters:

		A page-part must given as the first parameter. If it is found, the function returns true, otherwise it returns false. These results are returned whether or not the page-part actually contains any content.

		Like the content() and hasContent() functions, partExists() can also be inherited by setting the second parameter to true (optional); by default this is set to false.

Usage

 <?php if ($this->partExists('page-part')) {
 // do something if the part exists = true
 } else {
 // do something else if the part does not exist = false
 }; ?>

For more detail, see hasContent().

previous()

Wolf provides a simple previous() and next() function. previous returns an array of values relating to the page preceding the current page, if it exists. It is thus not used on its own, but normally would be used in the Layout to provide a link to the “preceding” page.

Example

The following code tests to see if a “previous” page exists. If it does, it makes a link accompanied by a label with a double-arrow pointing left:

 <?php if ($previous = $this->previous()): ?>
 <div style="float: left; border-top: thin solid #ccc; padding-top: 4px;"><?php echo $previous->link(); ?> « Previous</div>
 <?php endif; ?>

Also see: next()

slug()

The slug is the form of the page’s title used in the URL. It is produced by Wolf automatically when the page is created. For example, the “slug” for the “Articles” page is articles. Spaces are converted to hyphens: the title “Rhythm and Blues” will produce the slug rhythm-and-blues.

This value can be changed manually by editing it directly. When editing a page, click on the “Metadata” tab; “Slug” is the first field you see.

The slug of a given page can be retrieved with:

 <?php echo $this->slug(); ?>

!!! note
* Home Page has no slug, not ever. For this reason, Wolf CMS does not offer a “slug” field in the metadata area of the root page.
* Since the “slug” is used to form the page’s URL, be careful which characters you use.
* If the value of the slug is manually edited, it will retain the manually-edited value, even if the title of the page is changed.
* If you wish to get the slug of a page with the slugs of all its ancestor pages, use the :ref:getUri() function.

Example

find()

The find() function uses the slug value to find a page. To find the Articles page, use $this->find('/articles/').
Using the slug in conditions

The slug is the best value to use if you want to ensure that code is used on a certain page, or to prevent some code from executing on a given page. For example, if you want to prevent some code from running on your “blog”-type pages (Articles), you could use something like this:

 <?php if ($this->slug() != 'articles') {
 // do stuff you want to happen on all pages but the articles page
 code ... code ... code;
 } ?>

tags()

tags() produces an array of the tags which have been entered in the tags field under the Metadata tab when editing a page.

Usage

Wolf’s default installation gives a simple demonstration of a list of tags in the “Articles” page, where the following line is included:

 tags: <?php echo join(', ', $article->tags()); ?>

This shows you how to turn the tags() array into string, and this can then be used for other purposes.

Plugin

The most obvious way of handling tags is by using the Tagger [https://github.com/silentworks/tagger] plugin which is under active development. Its growing feature set allows for a range of tag-management and usage options.

Example

Subpages filtered by tag

If you wanted to give the list of subpages to a parent page, based on the presence of a particular tag, you could do it this way:

 <?php $findTag = 'hello'; // REPLACE hello WITH THE TAG YOU WANT TO FIND ?>
 <h3>Pages with the tag "<?php echo $findTag; ?>":</h3>

 <?php foreach ($this->children() as $child): ?>
 <?php $childTags = join(',', $child->tags()); ?>
 <?php if (strpos($childTags, $findTag) !== FALSE) : ?>
 <?php echo $child->link(); ?>
 <?php endif; ?>
 <?php endforeach; ?>

You manually enter the tag you want to find (“hello” is used in the example above), which is echoed in a heading to your list of pages. Then the foreach loop finds the child pages, while the strpos test filters those pages with the desired tag, which is then output to an unordered list. Include that block of code on the parent page, ensuring that the page’s text filter is not TinyMCE, which does not cope with PHP!

Although this code is for use on a “parent” page to find a certain tag-term among its child pages, it could be modified to look in other “branches” of the site, or to look through deeper levels.

$this->

Properly speaking, this is not a “Wolf” function at all. PHP uses a special variable, $this->, which always points to the “current object”. But what is the “current object”? In Wolf, the meaning of $this-> depends on where you use it. Here is it how works:

		in the Layout, $this-> points at currently displaying page, whatever it is.

		in the Body of page, $this-> points at that page only.

		in a Page-part, $this-> points at the page to which that part belongs — even if it is “inherited” by child pages with the true condition as in:
		<?php $this->content('sidebar', true); ?>

		For example, if the “sidebar” of “Homepage” uses $this->, and that sidebar is inherited by child pages, then $this-> still refers to the homepage.

		in a Snippet, $this-> will behave as outlined above, depending on whether you call the snippet in your layout, in the body of a page, or in a page-part.

That can be summarized in a table as follows:

If $this-> appears in	then $this-> points to
———————–	———————————————-
Layout	currently displayed page
Body of page	that specific page only
Page-part (tab)	the owning page only
Snippet	as above, depending on where snippet is called

title()

The title() function returns the title of the current page. This code:

 <?php echo $this->title(); ?>

will return the text found in the “Page Title” field, prominently displayed when editing a page.

Notes

This function does not take any parameters, but it can be used in conjunction with the find() function to display the title of a page that is not current.

Another example of its use can be found in “header” snippet for the Simple layout to generate Wolf’s main navigation:

 <?php echo $menu->link($menu->title, (in_array($menu->slug, explode('/', $this->url)) ? ' class="current"': null)); ?>

updater()

Wolf saves the id of the user who updates a page, and the name for that id can be displayed using updater(). This is sometimes given in the page’s “meta”, for example:

 <p class="meta">Updated by <?php echo $this->updater(); ?></p>

Also see: author()

updaterId()

Wolf saves the unique id number of the user who updates a page, and that id number can be accessed using `updaterId(). For notes on usage, see the authorId() function page.

url()

The url() function gives access to the URL of the current page. It does not take any parameters. If, for example, the current page was the “Articles” page, then

 <?php echo $this->url(); ?>

returns the value: http://www.example.com/articles

Also see: urlById()

Usage

URLs of pages that are not current

To return the URL of a page that is not current, use the find function. This code:

 <?php echo $this->find('articles')->url(); ?>

returns: http://www.example.com/articles, from anywhere in the site.

Using a Suffix

If you have set up Wolf to use a URL suffix to simulate static pages (e.g., ”.html”), then you might run into problems when embedding url() in a concatenated string. So, for example, in the “sidebar” code of the default “Articles” page, this code:

 <?php echo $this->url() .'/'. $date . URL_SUFFIX; ?>

produces an error, because ”.html” is embedded before the $date. In this case, omit the suffix by using the “false” flag:

 <?php echo $this->url(false) .'/'. $date . URL_SUFFIX; ?>

This will make “url” omit the unwanted suffix.

Creating links

Although url() can of course be used for creating links, there is a specialized function that is normally the preferred way of doing this: see the documentation on the link() function.

url_match()

This is a simple conditional function which tests the current URI against a parameter supplied. If they match, it returns true; otherwise it returns false.

Example

A useful example is found in the default “header” snippet that is created when Wolf is installed. In the navigation code, this is the first entry in the list:

 <a<?php echo url_match('/') ? ' class="current"': ''; ?> href="<?php echo URL_PUBLIC; ?>">Home

This hard-sets the “Home” link in the navigation; the url_match() function provides the test for whether the homepage is current, and echoes the class="current" for styling the anchor if the test is successful.

!!! note
All elements of the URI must be matched for true to be returned. For example, with the URL http://wolfsite.com/page/child-page, the test url_match('child-page') will return false, but url_match('page/child-page') will return true.

Also see: url_start_with()

url_start_with()

This is a simple conditional function which tests the current URI against a parameter supplied. If the parameter matches the first element in the URI, it returns “true”; otherwise it returns “false”.

Examples

Consider the URL http://www.example.com/produce/fruit/apples:

		url_start_with('produce') will return true on
		http://www.example.com/produce, and on

		http://www.example.com/produce/fruit, and on

		http://www.example.com/produce/fruit/apples.

		url_start_with('produce/fruit') will return
		“false” on http://www.example.com/produce, but

		“true” on http://www.example.com/produce/fruit, and on

		http://www.example.com/produce/fruit/apples.

		url_start_with('fruit') will only return “false”.

Usage

This could be a useful function for using specific banner images in different sections of a website. For example, if there is a JPG image which correspsonds to the each top-level page in the site (like “produce”, above), it could be included this way:

 //find the top-level page slug, and save it to a variable, e.g. $topSlug, then
 <img src="<?php echo (url_start_with($topSlug)) ? $topSlug : 'default'; ?>.jpg" />

This banner would then be used for all the child-pages (e.g. “fruit” and “apples” in the example above) for that top page.

Also see: url_match()

urlById()

This function makes it possible always to produce a correct and current url to the page despite it possibly having moved from its original position in the page hierarchy. It does this by using the page’s id().

Usage

 <?php echo Page::urlById(3); ?>

where “3” in the example above is the “id” of the targetted page. It will produce the corresponding URL, e.g. http://www.example.com/about_us.

To find out what the ID of a given page is, either look on the “metadata” tab, or hover above the page’s title or icon in the main admin page listing, where the ID will appear as a tooltip.

Using a variable for the ID

Using a simple variable for the ID will not pass the filter test set by the urlById() function. In other words, something like this:

 <?php echo Page::urlById($article->id()); ?>

will throw an error. It is possible to set the ID number dynamically, but it requires an extra step, wrapping the variable for the ID in with the PHP intval() [http://php.net/manual/en/function.intval.php] function, like this:

 <?php
 $articleId = intval($article->id());
 echo Page::urlById($articleId);
 ?>

With this in place, the urlById() function will work as expected.

Footnotes

///Footnotes Go Here///

 © Copyright .
 Created using Sphinx 1.3.1.

styleguide.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Style guide

The following style guide should be followed when writing documentation for this site. When writing documentation for Wolf CMS, we highly appreciate people following this guide as it allows us to more easily incorporate contributed documentation. If the guide is lacking or faulty somehow, please do bring that to our attention.

Thank you.

Document title

Every document is starts with its own title and it is written as follows:

 Document title
 ==============

Sub headings

The various levels of sub headings should be written as:

 Level two heading

 ### Level three heading

 #### Level four heading

 ##### Level five heading

 ###### Level six heading

Notes

Various types of notes can and should be used throughout the documentation to inform people of special cases, danger areas, give tips, etc. However, notes should not be used overly much. The various note types are:

!!! note
The informational note, written as:

 !!! note
 Some extra piece of information.

!!! tip
A note that gives a tip, written as:

 !!! tip
 A handy tip!

!!! warning
A note that gives a warning, written as:

 !!! warning
 Please make sure you backup your system before...

!!! danger
A note that warns of dangerous actions or settins, written as:

 !!! danger
 If you do this you will likely screw up your system!

Code

When applicable, you should enhance your explanations using code examples. Settings, file names and code in general should either be written as short, inline entries using single backticks (`) surrounding the code or as so called code blocks:


    ```
        This is a code block.
    ```


Inline markup

		one asterisk: *text* for emphasis;

		two asterisks: **text** for strong emphasis;

Lists

List markup is natural: just place an asterisk at the start of a paragraph and indent properly. The same goes for numbered lists.

* This is a bulleted list.
* It has two items, the second

 item uses several lines which are all indented.

1. This is a numbered list.
2. It has two items too.

Nested lists can be achieved by simply indenting them.

!!! note
When adding code blocks or similar structures to a list, make sure they are all indented, including any empty lines.

Hyperlinks

When additional information is needed or when referencing other parts of the documentation, a link is required. You can link in several different ways depending on the requirements of the situation:

		Basic raw links
<http://www.example.com/>

		Link using descriptive text
[Link text](http://www.example.com/)

		Link to other pages within the documentation
[Link text](path/to/doc.md)

		Link to an anchor within a page
[Link text](yourpage.md#anchorname)

		Link to an same-page anchor
[Link text](#anchorname)

Please note that all headings are automatically anchors.

!!! warning
Due to a bug in the current MkDocs implementation, same-page anchor links should be written as [Link text](samepage.md#anchor) instead of the correct [Link text](#anchor).

Images

Images can be inserted either using markdown syntax or as basic HTML code when alignment or special styling is required. Whenever possible, stick to the markdown syntax.

 ![Alternate text](images/example-image.png)
 ![Alternate text](images/example-image.png "Optional title")
 <p align="center"></p>

Before you do this, you need to prepare image (crop, resize, mark...) and put it in the docs/images folder.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/down-pressed.png

faq.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Frequently Asked Questions

Installation

1.1 Is there an installation manual?

Yes. Please see the docs/ directory included in the download for basic instructions on installation and upgrading. This site contains more complete information on installation.

1.2 Installation completed, but there is nothing in the database?

		Make sure you have entered the correct database information during the installation process.

		Make sure your system complies with the Wolf CMS requirements.

		Delete the contents of config.php, make sure there are no tables left in the database and try re-running the installation routine.

1.3 The front-end works but I cannot login to the admin section?

Assuming you have used the correct username and password, which was given to you at the end of the installation process, the problem might be with your PHP session.

		Go to the login form and enter an incorrect username/password. If there is no red error message, your PHP session probably doesn’t store variables.

		To fix this: check that the path for the session file is correct in your php.ini configuration file.

		Make sure the session storage type is set to file.

!!! note
You should consult with your hosting provider if applicable.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

_static/file.png

search.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

getting-started/installation.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Installation

Getting Wolf CMS installed on your server or hosting package involves a number of steps. Fortunately, the steps are fairly simple and are applicable to most hosting providers.

(Most of the steps below are illustrated in this 4m45s video [http://screenr.com/c4f], also available on YouTube [http://www.youtube.com/watch?v=66BoegrqDxw], which demonstrates how to install Wolf CMS (0.7.3) with mySQL as the database on localhost.)

Creating a database

Wolf CMS depends on a database being available. Creating one yourself[^1] or having one created for you depends on your exact environment or hosting provider and is beyond the scope of this document.

[^1]: If you are using mySQL for your db, phpMyAdmin is a good tool for this.

For our installation purposes, we will assume that you can or already have created a database for use by Wolf CMS.

MySQL

If you are using MySQL, it is probably best to have the db prepared before proceeding with the rest of the installation instructions. You will need to know:

		The database name

		The database username

		The database user password

If your specific environment differs from what Wolf CMS expects, you may additionally need to know:

		The database server name or IP address

		The database server port number

Make sure that your database is using a Unicode collation type (e.g. utf8_general_ci).

SQLite 3

If you are using SQLite, it is probably best to create the db during the Wolf install process. Wolf’s installation screen will suggest a location and filename for your db outside the Wolf directory structure. You will need to create the folder/file that the Wolf install screen recommends, or alternatively, another one of your own choosing.

In any case, this needs to be an absolute path, with full write permissions for Wolf to be able to use it. Ensure this has been done before proceeding to the final “Install” step.

Uploading the software

After having retrieved the Wolf CMS software from our download pages [http://www.wolfcms.org/download.html], you will need to copy it to your webserver. Unzip the package in the appropriate directory on your server.

This will usually be a www or public_html directory or a subdirectory of that. Wolf CMS is quite happy to work inside a subdirectory.

.htaccess

If you want to use clean URLs (e.g. no ”?” in the URL), then you will have to:

		Rename _.htaccess to .htaccess

		Update, if necessary, the RewriteBase parameter in the .htaccess

!!! note
For installations in the root of your site (e.g. http://www.example.com/) the RewriteBase entry should be /, for installations within a sub-directory (e.g. http://www.example.com/my-wolfcms/) this should be /my-wolfcms/.

Use of magic_quotes_gpc

It is highly recommended to switch off magic_quotes_gpc since this feature is deprecated starting PHP 5.3 and will removed starting PHP 5.4. If it is not already turned off by the server operator, you can try to do this in the .htaccess file by adding a line php_flag magic_quotes_gpc off.

Many servers are configured to not allow changing settings using .htaccess and the install will fail.

!!! tip
Your hosting provider may allow the use of a custom php.ini to add this setting as magic_quotes_gpc off. If using such a custom php.ini file produces a blank screen, you should contact your hosting provider to inquire how to disable the magic quotes feature.

Running the install routine

After you have copied the files onto your webserver, you will need to run the installation routine.

		Open your browser and go to the root of your Wolf CMS installation. An automatic redirect should take you to the /wolf/install/ section of your new site.

		Answer all the questions after reviewing them carefully.

After finishing the installation, you will get a message that includes a link to the admin section of your new site. That page also shows you the administrator’s username and generated password.

Post install steps

A number of post installation steps are required and/or advised for you to do. These will help secure your Wolf CMS installation.

		Delete the /install and /docs directories.

		Remove all of the write permissions for the config.php file.[^2]

		Run the security check to determine any other steps you might need to take.

You can now login with the administrator’s username and generated password which was displayed on the post installation confirmation page.

!!! warning
You should always change your administrator’s password to something private and secure!

!!! tip
You may optionally also wish to change the location of your admin section to further enhance the security of your new Wolf CMS website. Please see the optional post-install configuration section below.

[^2]: Removing the write permissions from config.php is a mandatory security measure & Wolf CMS will refuse to execute until you do this.

///Footnotes Go Here///

Optional post-install configuration

Renaming admin area url

The default path to the administration backend for Wolf CMS is http://www.example.com/admin/
however, that can be changed with a minor change in the configuration file.

For our example purposes, we will change our path from /admin/ to /system/.

		Temporarily make your config.php file writable and open it.

		Find and edit the following entry: define('ADMIN_DIR', 'admin');

		Now change the value admin to system.

		Save the changes and remove the write permissions again.

Now your administration area will be available at http://www.example.com/system/

!!! warning
Do not rename the .../wolf/admin folder. The administration area uses a virtual url path. This is configured through the ADMIN_DIR setting.

 © Copyright .
 Created using Sphinx 1.3.1.

getting-started/configuration.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Configuration

All configurable data is placed in config.php. If this file does not exist something went wrong during installation. This file only needs to contain the parameters you want to change from their corresponding default values.

If a directive is missing from your file, you can just add another line within the file. This file is for over-writing the defaults; if you wish to use the default value there’s no need to add a directive.

You should assume that any configuration directives that were generated by the installation routine of Wolf CMS are required to be there or have no default value for some reason.

!!! warning
Mac users should note that if you are on a version before Mac OS X, PHP does not seem to like Mac end of lines character (\r). So ensure you choose the option that allows to use the *nix end of line character (\n) in your text editor before saving a modified config.php.

Using clean URLs

The default installation of Wolf CMS generates a question mark in the URLs it generates. This is for compatibility purposes, so Wolf CMS will run on almost any HTTP server by default.

However, most people (and search engines) don’t really like this question mark. You can disable/remove the question mark after you installed Wolf CMS.

By default, Wolf CMS supports Apache. Other HTTP servers are supported based on user input.

!!! important
You must carry out both the “General actions” as well as the additional instructions for your specific web server (Apache, Lighttpd, Nginx, etc.).

General actions

The following actions should always be executed in order for Wolf CMS to use clean urls.

		Temporarily add write permissions to the config.php file and edit it.

		Change the value of the USE_MOD_REWRITE setting to true.

		Save the file and remove the write permissions again.

		Apply the directions for your specific HTTP server. See rewrite.

After applying the directions, test out the change by going to the root of your website. You should no longer see the question mark.

Basic settings

define(‘DB_DSN’, ...)

Type: string
Default: generated

Contains the complete connection string required for Wolf CMS to connect to it’s database. This string is generated based on the selections you made during the installation phase.

define(‘DB_USER’, ...)

Type: string
Default: generated

The username required to connect to the database. This string is generated based on the selections you made during the installation phase.

define(‘DB_PASS’, ...)

Type: string
Default: generated

The username required to connect to the database. This string is generated based on the selections you made during the installation phase.

define(‘TABLE_PREFIX’, ...)

Type: string
Default: generated

The prefix that should be used when creating and referencing database tables. This string is generated based on the selections you made during the installation phase.

Server connectivity settings

define(‘URL_PUBLIC’, ...)

Type: string
Default: generated

The full HTTP URL to your Wolf CMS installation. This values is used throughout the software and it’s plugins to reference various URLs. Only change this value if you are absolutely sure what you’re doing.

define(‘USE_MOD_REWRITE’, ...)

Type: boolean
Default: false

Change this setting to enable the use of mod_rewrite. When set to true, Wolf CMS tries to remove the ”?” in the URL. For this to succeed, a correct set of rewrite rules will have to be configured.

Additionally, to enable mod_rewrite, you must also change the name of _.htaccess in your root directory to .htaccess.

define(‘URL_SUFFIX’, ...)

Type: string
Default: .html

This option allows you to add a default suffix to your page URLs to, for example, simulate static pages.

Generic settings

define(‘ADMIN_DIR’, ...)

Type: string
Default: admin

The name of the HTTP path, also known as a virtual directory, that your site’s administration section lives behind.

define(‘DEFAULT_TIMEZONE’, ...)

Type: string
Default: generated

Sets in which timezone your installation lives. For more information on the available timezones, see http://php.net/timezones

define(‘USE_POORMANSCRON’, ...)

Type: boolean
Default: false

Whether or not to use a so-called web bug to run CRON runs when users visit your site. If your site does not get any hits, the poorman’s cron run will never take place.

define(‘POORMANSCRON_INTERVAL’, ...)

Type: integer
Default: 3600 (60 minutes)

The minimum amount of time in seconds between two CRON runs when using the poorman’s cron option.

define(‘COOKIE_LIFE’, ...)

Type: integer
Default: 1800 (30 minutes)

The amount of time in seconds that a logged in session remains valid.

define(‘ALLOW_LOGIN_WITH_EMAIL’, ...)

Type: boolean
Default: false

Whether or not previously registered users can login using their registered email address.

define(‘CHECK_UPDATES’, ...)

Type: boolean
Default: true

Whether or not Wolf CMS will check if there are updates for itself or any of its plugins.

define(‘CHECK_TIMEOUT’, ...)

Type: integer
Default: 3

The number of seconds before the check for updates times out in case of problems.

Security settings

define(‘USE_HTTPS’, ...)

Type: boolean
Default: false

Whether or not to use HTTPS for the administration section of your website. Before enabling this, please make sure you have a working HTTP + SSL installation.

define(‘COOKIE_HTTP_ONLY’, ...)

Type: boolean
Default: false

Whether or not to use a so-called HttpOnly[^1] authentication cookie instead of a unprotected one. This requests browsers to make the cookie only available through HTTP, so not javascript for example. There is no guarantee the browser honors the request, but OWASP recommends using it. Defaults to false for backwards compatibility.

[^1]: See https://www.owasp.org/index.php/HttpOnly for more details.

!!! note
This option will default to true in future releases.

define(‘DELAY_ON_INVALID_LOGIN’, ...)

Type: boolean
Default: true

Whether or not Wolf CMS should temporarily block login attempts to an account in case invalid login attempts occurred.

define(‘DELAY_ONCE_EVERY’, ...)

Type: integer
Default: 30

The amount of time in seconds that Wolf CMS should block login attempts to an account for after invalid login attempts occurred.

define(‘DELAY_FIRST_AFTER’, ...)

Type: integer
Default: 3

The number of invalid login attempts to an account that are permitted before Wolf CMS starts to (temporarily) block further login attempts.

define(‘SECURE_TOKEN_EXPIRY’, ...)

Type: integer
Default: 900 (15 minutes)

The amount of time in seconds before a security token, otherwise known as an CSRF token, is no longer deemed valid. If a user tries to undertake an action, like saving a page, after the token has expired, the system will display an Invalid CSRF token.. message.

Simply re-attemting the same action will allow the user to continue.

!!! warning
The CSRF token is considered a very important feature to help protect against hackers stealing a user’s session information and abusing that account. We strongly advise not setting this value too high.

Debug & Development settings

!!! danger
These settings might have huge effect on performance or security.

define(‘DEBUG’, ...)

Type: boolean
Default: false

Defines whether or not Wolf CMS should produce error messages for debugging issues.

Footnotes

///Footnotes Go Here///

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

getting-started/requirements.html

 Navigation

 		
 index

 		Wolf CMS latest documentation »

Requirements

Web server

To run Wolf CMS, you’ll need a web server that supports PHP (such as Apache) to host Wolf CMS’s files. If you want to use clean URLs (e.g. no ”?” in the URL), then you will also require support for some sort of URL rewriting mechanism in your HTTP server.

While the system is tested on the Apache HTTP server, Wolf CMS is known to run on these HTTP servers as well:

		Cherokee

		Lighttpd

		Nginx

		Hiawatha

!!! note
If you’re running Wolf CMS on a different HTTP server successfully, please let us know at forum.wolfcms.org [http://forum.wolfcms.org/]

PHP

		You need PHP 5.3.0 or newer, with session support and magic_quotes_gpc turned off.

		You need native PDO support.

Database

Wolf CMS currently supports several databases.

		MySQL 5 or newer

		PostgreSQL 8.4.5 or newer

		SQLite 3

 © Copyright .
 Created using Sphinx 1.3.1.

